168 lines
6.3 KiB
Markdown
168 lines
6.3 KiB
Markdown
项目地址:[https://gitea.suimu.site/lennon/recommend_system](https://gitea.suimu.site/lennon/recommend_system)
|
||
|
||
项目中给出两个算法,一个是基于用户的协同过滤算法,一个是基于物品的协同过滤算法。
|
||
|
||
|
||
|
||
# 数据处理
|
||
## 原始数据集说明
|
||
用户与课程关联数据集, 行数说明
|
||
|
||
| 字段 | 名称 | 示例值 | 描述 | 取值范围 |
|
||
| :---: | :---: | :---: | :---: | :---: |
|
||
| views | 浏览记录 | 60% | 用户对课程浏览进度 | (0%,100%) |
|
||
| favorites | 收藏记录 | 0 | 用户是否收藏课程,1 为收藏 | enum(0,1) |
|
||
| likes | 点赞记录 | 1 | 用户是否点赞课程,1 为点赞 | enum(0,1) |
|
||
| comments | 评论记录 | ["Loved it", "Would buy again"] | 用户对课程的评论,为字符串数组 | ["Great product!", "Loved it", "Would buy again"] |
|
||
| shares | 分享记录 | 1 | 用户是否分享课程,1 为分享 | enum(0,1) |
|
||
| feedbacks | 反馈记录 | [ "Shipping was fast"] | 用户对课程的反馈,为字符串数组 | ["The product was good", "Shipping was fast"] |
|
||
| ratings | 评分记录 | 3 | 用户对课程的评分 | (1,5) |
|
||
|
||
|
||
|
||
|
||
## 中间状态,文本情感计算
|
||
处理文本情感之后的数据,示例如下:
|
||
|
||
| **用户编码** | **课程编码** | **浏览记录** | **收藏记录** | **点赞记录** | **评论记录** | **分享记录** | **反馈记录** | **评分记录** |
|
||
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
||
| 1 | 1 | 0.28 | 1 | 0 | 0.25 | 1 | 0.87 | 1 |
|
||
| 1 | 2 | 0.49 | 0 | 1 | 0.76 | 0 | 0.65 | 3 |
|
||
|
||
|
||
其中,评论记录和反馈记录通过 NLP 的情感分析,得到 (0,1)之间的两位小数。偏向 1 表示正向情感。
|
||
|
||
```python
|
||
pip install snownlp
|
||
```
|
||
|
||
```python
|
||
from snownlp import SnowNLP
|
||
|
||
text1 = "这个产品真的很好用!"
|
||
s = SnowNLP(text1)
|
||
print(s.sentiments) # 输出情感得分 0.8380894562907347
|
||
|
||
|
||
from snownlp import SnowNLP
|
||
|
||
text = "好烦啊,和参数对不上!"
|
||
s = SnowNLP(text)
|
||
print(s.sentiments) # 输出情感得分 0.2734196629160368
|
||
```
|
||
|
||
|
||
|
||
## 计算 User-Item 的评分
|
||
在原始 ml-100k 数据集中,用户和电影之间的评分是手动打的,本项目中的实现逻辑也比较简单。计算物品或者用户的邻居逻辑都在类 `CoreMath`中。所以这边需要根据 浏览记录、收藏记录、点赞记录、评论记录、反馈记录、评分记录等信息计算出一个评分。
|
||
|
||
实现逻辑是将所有的信息都标准化为一个 0 到 1 之间数,然后按照不同信息的重要程度给一个权重。计算出一个 1 到 5 之间的分数。这样就不需要改动原有算法的代码了。
|
||
|
||
### 权重分配说明:
|
||
+ **浏览记录 (views)**: 虽然浏览行为重要,但它属于较为被动的行为。建议赋予较低的权重。
|
||
+ **收藏记录 (favorites)**: 收藏表明用户对产品有一定的兴趣,建议赋予中等权重。
|
||
+ **点赞记录 (likes)**: 点赞表示用户的积极反馈,建议赋予中等偏高的权重。
|
||
+ **评论记录 (comments)**: 评论能直接反映用户的想法,建议赋予较高的权重。
|
||
+ **分享记录 (shares)**: 分享表明用户愿意向他人推荐产品,建议赋予中等偏高的权重。
|
||
+ **反馈记录 (feedbacks)**: 反馈通常比评论更详细,建议赋予较高的权重。
|
||
+ **评分记录 (ratings)**: 评分是最直接的用户评分,建议赋予最高的权重。
|
||
|
||
### 权重分配建议
|
||
```python
|
||
weights = {
|
||
'views': 0.05, # 浏览记录:较低权重
|
||
'favorites': 0.1, # 收藏记录:中等权重
|
||
'likes': 0.15, # 点赞记录:中等偏高权重
|
||
'comments': 0.2, # 评论记录:较高权重
|
||
'shares': 0.15, # 分享记录:中等偏高权重
|
||
'feedbacks': 0.2, # 反馈记录:较高权重
|
||
'ratings': 0.15 # 评分记录:最高权重
|
||
}
|
||
```
|
||
|
||
### 代码示例
|
||
```python
|
||
from typing import Dict
|
||
from snownlp import SnowNLP
|
||
|
||
def calculate_composite_score(
|
||
views: float,
|
||
favorites: int,
|
||
likes: int,
|
||
comments: list[str],
|
||
shares: int,
|
||
feedbacks: list[str],
|
||
rating: int,
|
||
weights: Dict[str, float] = None
|
||
) -> float:
|
||
if weights is None:
|
||
print("No weights provided, using default values.")
|
||
weights = {
|
||
'views': 0.01,
|
||
'favorites': 0.1,
|
||
'likes': 0.125,
|
||
'comments': 0.175,
|
||
'shares': 0.125,
|
||
'feedbacks': 0.175,
|
||
'rating': 0.29
|
||
}
|
||
print(f"Weights: {weights}")
|
||
|
||
# 量化 comments 和 feedback 数据,如果列表为空则默认为0
|
||
avg_comment_score = np.mean([SnowNLP(comment).sentiments for comment in comments]) if comments else 0
|
||
avg_feedback_score = np.mean([SnowNLP(feedback).sentiments for feedback in feedbacks]) if feedbacks else 0
|
||
|
||
# 格式化为两位小数
|
||
avg_comment_score_formatted = round(avg_comment_score, 2)
|
||
avg_feedback_score_formatted = round(avg_feedback_score, 2)
|
||
|
||
print(f"Average comment score: {avg_comment_score_formatted}")
|
||
print(f"Average feedback length: {avg_feedback_score_formatted}")
|
||
|
||
# 将评分数据缩放到 0-1
|
||
scale_rating = rating * 0.2
|
||
|
||
# Calculate the weighted score
|
||
score = (
|
||
views * weights['views'] +
|
||
favorites * weights['favorites'] +
|
||
likes * weights['likes'] +
|
||
avg_comment_score_formatted * weights['comments'] +
|
||
shares * weights['shares'] +
|
||
avg_feedback_score_formatted * weights['feedbacks'] +
|
||
scale_rating * weights['rating']
|
||
)
|
||
|
||
print(f"Score: {score}")
|
||
|
||
# Ensure the score is in the range [1, 5]
|
||
score = max(1, min(5, score * 5))
|
||
|
||
return round(score, 2)
|
||
|
||
|
||
# 示例用法
|
||
views = 75 * 0.01 # 假设 75% 的用户浏览了这个 item
|
||
favorites = 1
|
||
likes = 0
|
||
comments = ["非常棒的产品!", "超爱的", "下次还买"]
|
||
shares = 1
|
||
feedbacks = ["产品很好", "发货速度很快"]
|
||
rating = 5
|
||
|
||
composite_score = calculate_composite_score(views, favorites, likes, comments, shares, feedbacks, rating)
|
||
print("Composite Score:", composite_score)
|
||
```
|
||
|
||
# 算法缺点
|
||
|
||
## 问题
|
||
这种融合的计算方式会导致辛普森悖论
|
||
|
||

|
||
|
||
## 改进方案
|
||
|
||
将 1-5 的分数值换成多维的评分向量,比如 [0.2, 0.3, 0.5, 0.1, 0.1],这样每个维度的权重可以不同,
|
||
当然计算时消耗的资源也会增加。
|